贺州学院学报

1995, (02) 64-67

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

实数系中连续性的七个等价命题

张勇

摘要(Abstract):

<正> 实数在数学中是一个重要概念。在中学数学教材中给它下的定义是:有理数和无理数统称实数。那么何谓无理数?这在中学数学教材中是用否定形式来定义的,即:不是有理数的实数称为无理数。这对我们认识无理数无多大的帮助。其实要真正回答什么是无理数并不是一个简单的问题。它的严密回答,直到十九世纪后半,才由戴德金、康托等人得到。他们都是以有理数为基础得到无理数理论的,从而完成了实数构造理论。值得一提的是戴德金实数构造和康托实数构造是不同的,这两种构造都以有理数为基础,但戴德金实数是从数域的连续性要求出发用有理数分割来建立实数,

关键词(KeyWords):

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 张勇

Email:

DOI:

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享